Call for Abstract

6th International Conference on Tissue Engineering and Regenerative Medicine , will be organized around the theme ““Importance of Tissue Engineering and Regenerative Medicine to the Future of Health Care””

Tissue Science 2017 is comprised of keynote and speakers sessions on latest cutting edge research designed to offer comprehensive global discussions that address current issues in Tissue Science 2017

Submit your abstract to any of the mentioned tracks.

Register now for the conference by choosing an appropriate package suitable to you.

The recent integration of emerging nanotechnology into biology and biomedicine has resulted in a range of innovative nanoengineering efforts for the repair and regeneration of tissues and organs. Thus, it is expected that nanoengineering approaches to biomedical applications can contribute to addressing the present issue of personal and global health care and its economic burden for more than 7 billion people.Biomimetic nanopatterns alone can direct the differentiation of stem cells without involvement of exogenous soluble biochemical factors. This regulation of cellular behavior by nanotechnology is one of many examples demonstrating the significant applications of nanoengineering in biomedicine. This special issue includes four review papers and seven research articles that provide an insight into current nanoengineering approaches to the repair or regeneration of tissues and organs

  • Track 1-1Nanoparticle-cell interactions
  • Track 1-2Nanotechnology in the Regeneration of Complex Tissues

In the field of biology, regeneration is the progression of renewal, regeneration and growth that makes it possible for genomes, cells, organ regeneration to natural changes or events that cause damage or disturbance. This study is carried out as craniofacial tissue engineering, in-situ tissue regeneration, adipose-derived stem cells for tissue science which is also a breakthrough in cell culture technology. The study is not stopped with the regeneration of tissue where it is further carried out in relation with cell signalling, morphogenetic proteins. Most of the neurological disorders occurred accidental having a scope of recovery by replacement or repair of intervertebral discs repair, spinal fusion and many more advancements. The global market for tissue engineering and regeneration products such as scaffolds, tissue implants, biomimetic materials reached $55.9 billion in 2010 and it is expected to reach $89.7 billion by 2016 at a compounded annual growth rate (CAGR) of 8.4%.  It grows to $135 billion by 2024.

  • Track 2-1Prosthodontics and endodontics
  • Track 2-2Periodontal therapy/surgery
  • Track 2-3Effects of guided tissue regeneration
  • Track 2-4Advancements in biomedical and tissue engineering techniques
  • Track 2-5Recent innovations in regenerative and tissue engineering
  • Track 2-6Advanced stem cell therapies in tissue engineering

Bioengineered skin and soft tissue substitutes may be derived from human tissue (autologous or allogeneic), nonhuman tissue (xenographic), synthetic materials, or a composite of these materials. Bioengineered skin and soft tissue substitutes are being evaluated for a variety of conditions, including breast reconstruction and healing lower-extremity ulcers and severe burns. Acellular dermal matrix (ADM) products are also being evaluated for soft tissue repair.

This interdisciplinary engineering has attracted much attention as a new therapeutic means that may overcome the drawbacks involved in the current artificial organs and organ transplantation that have been also aiming at replacing lost or severely damaged tissues or organs. Tissue engineering and regenerative medicine is an exciting research area that aims at regenerative alternatives to harvested tissues for organ transplantation with soft tissues. Although significant progress has been made in the tissue engineering field, many challenges remain and further development in this area will require on-going interactions and collaborations among the scientists from multiple disciplines, and in partnership with the regulatory and the funding agencies. As a result of the medical and market potential, there is significant academic and corporate interest in this technology.

Although several major progresses have been introduced in the field of bone regenerative medicine during the years, current therapies, such as bone grafts, still have many limitations. Moreover, and in spite of the fact that material science technology has resulted in clear improvements in the field of bone substitution medicine, no adequate bone substitute has been developed and hence large bone defects/injuries still represent a major challenge for orthopaedic and reconstructive surgeons. It is in this context that TE has been emerging as a valid approach to the current therapies for bone regeneration/substitution. In contrast to classic biomaterial approach, TE is based on the understanding of tissue formation. 

  • Track 5-1Histopathology
  • Track 5-2Tissue biomarkers
  • Track 5-3Photodynamic therapy
  • Track 5-4Tissue graft tolerance

Tissue engineering of musculoskeletal tissues, particularly bone and cartilage, is a rapidly advancing field. In bone, technology has centred on bone graft substitute materials and the development of biodegradable scaffolds. Recently, tissue engineering strategies have included cell and gene therapy. The availability of growth factors and the expanding knowledge base concerning the bone regeneration with modern techniques like recombinant signalling molecules, solid free form fabrication of scaffolds, synthetic cartilage, Electrochemical deposition, spinal fusion and ossification are new generated techniques for tissue-engineering applications. The worldwide market for bone and cartilage repairs strategies is estimated about $300 million. During the last 10/15 years, the scientific community witnessed and reported the appearance of several sources of stem cells with both osteon and chondrogenic potential.

  • Track 6-1Bone regeneration and modern techniques
  • Track 6-2Recombinant signalling molecules
  • Track 6-3Solid free form fabrication of scaffolds
  • Track 6-4Spinal fusion and Ossification
  • Track 6-5Using stem cells to build new bones

Bioreactors come in a variety of sizes, shapes, and forms. Single-use bioreactors for cell culture were introduced to the market in the mid-90s and they are now widely used in process development, research, and manufacturing up to 2000 L scale. Disposable technology brings an increased speed and flexibility to bioprocessing and decreases cleaning validation costs.

In vitro cell models are invaluable tools for studying diseases and discovering drugs. Human induced pluripotent stem cells, particularly derived from patients, are an advantageous resource for generating ample supplies of cells to create unique platforms that model disease. This manuscript will review recent developments in modeling a variety of diseases (including their cellular phenotypes) with induced pluripotent stem cells derived from patients. It will also describe how researchers have exploited these models to validate drugs as potential therapeutics for these devastating diseases.

Tooth regeneration is a stem cell based regenerative medicine procedure in the field of tissue engineering and stem cell biology to replace damaged or lost teeth by regrowing them from autologous stem cells.

As a source of the new bioengineered teeth somatic stem cells are collected and reprogrammed to induced pluripotent stem cells which can be placed in the dental lamina directly or placed in a reabsorbable biopolyme in the shape of the new tooth .

Regenerative medicine is a branch of translational research in tissue engineering and molecular biology which deals with the process of replacing, engineering or regenerating human cells, tissues or organs to restore or establish normal function. The latest developments involve advances in cell and gene therapy and stem cell research, molecular therapy, dental and craniofacial regeneration. Regenerative medicines have the unique ability to repair, replace and regenerate tissues and organs, affected due to some injury, disease or due to natural aging process. These medicines are capable of restoring the functionality of cells and tissues. The global regenerative medicine market will reach $ 67.6 billion by 2020 from $16.4 billion in 2013, registering a CAGR of 23.2% during forecast period (2014 - 2020). Small molecules and biologics segment holds prominent market share in the overall regenerative medicine technology market and is anticipated to grow at a CAGR of 18.9% during the forecast period.

  • Track 10-1Vascular tissue engineering and regeneration
  • Track 10-2Organ transplantation and its new techniques
  • Track 10-3Advanced developments in artificial organ system
  • Track 10-4Regenerative-medicine approach

The applications of tissue engineering and regenerative medicine are innumerable as they mark the replacement of medication and organ replacement. The applications involve cell tracking and tissue imaging, cell therapy and regenerative medicine, organ harvesting, transport and transplant, the application of nanotechnology in tissue engineering and regenerative medicine and bio banking. Globally the research statistics are increasing at a vast scale and many universities and companies are conducting events on the subject regenerative medicine conference like tissue implants workshops, endodontics meetings, tissue biomarkers events, tissue repair meetings, regenerative medicine conferencestissue engineering conferenceregenerative medicine workshop, veterinary regenerative medicine, regenerative medicine symposiums, tissue regeneration conferences, regenerative medicine congress.

There are strong pricing pressures from public healthcare payers globally as Governments try to reduce budget deficits. Regenerative medicine could potentially save public health bodies money by reducing the need for long-term care and reducing associated disorders, with potential benefits for the world economy as a whole. The global market for tissue engineering and regeneration products reached $55.9 billion in 2010, is expected to reach $59.8 billion by 2011, and will further grow to $89.7 billion by 2016 at a compounded annual growth rate (CAGR) of 8.4%.  It grows to $135 billion to 2024. The contribution of the European region was 43.3% of the market in 2010, a value of $24.2 billion. The market is expected to reach $25.5 billion by 2011 and will further grow to $36.1 billion by 2016 at a CAGR of 7.2%. It grows to $65 billion to 2024.

Embryonic stem cells are pluripotent, meaning they are able to grow (i.e. differentiate) into all derivatives of the three primary germ layers: ectoderm, endoderm and mesoderm. In other words, they can develop into each of the more than 200 cell types of the adult body as long as they are specified to do so. Embryonic stem cells are distinguished by two distinctive properties: their pluripotency, and their ability to replicate indefinitely. ES cells are pluripotent, that is, they are able to differentiate into all derivatives of the three primary germ layers: ectoderm, endoderm, and mesoderm. These include each of the more than 220 cell types in the adult body. Pluripotency distinguishes embryonic stem cells from adult stem cells found in adults; while embryonic stem cells can generate all cell types in the body, adult stem cells are multipotent and can produce only a limited number of cell types. Additionally, under defined conditions, embryonic stem cells are capable of propagating themselves indefinitely. This allows embryonic stem cells to be employed as useful tools for both research and regenerative medicine, because they can produce limitless numbers of themselves for continued research or clinical use.

  • Track 13-1Pro embryonic stem cell research
  • Track 13-2Human embryonic stem cells

Stem cell transplantation is a procedure that is most often recommended as a treatment option for people with leukaemia, multiple myeloma, and some types of lymphoma. It may also be used to treat some genetic diseases that involve the blood. During a stem cell transplant diseased bone marrow (the spongy, fatty tissue found inside larger bones) is destroyed with chemotherapy and/or radiation therapy and then replaced with highly specialized stem cells that develop into healthy bone marrow. Although this procedure used to be referred to as a bone marrow transplant, today it is more commonly called a stem cell transplant because it is stem cells in the blood that are typically being transplanted, not the actual bone marrow tissue.

  • Track 14-1Advances in stem cell transplantation
  • Track 14-2Autologous stem cell transplant
  • Track 14-3Cord blood stem cell transplant
  • Track 14-4Embryonic stem cell transplant